

A Simple Cosmic Ray Telescope

Presented by Andria Erzbeger, Lawrence Berkeley Laboratory

Talk written by Howard Matis, LBL, hsmatis@lbl.gov

Requirements

- Make quantitative measurements
- Easy to use and interpret
- Make repeatable directional measurements
- Portable
- Fairly inexpensive
- Rugged to transport
- Easy to build

Functional Detector

Detector

- Use "Electron Tube" integrated base and phototube
- Scintillator in one section.
- No light pipe makes the detector much less resistant to transport damage
- Might be able to polish only one edge

Circuit Board

- Integrated circuit board
- Simple parts
- Use cheap comparitor to measure coincidence
- Use long coincidence time
 700 ns
- Functions include
 - Timer or indefinite
 - Beeper (on or off)
 - Coincidence or singles
 - CBL output

Measurements

Cosmic Rays

- Flux and direction of cosmic ray
- Rough energy analysis (use absorbers)
- Singles Mode
 - Measure radioactivity
- Mathematics
 - Measurement of a random phenomena
 - Describe statistical significance of a measurement
 - Describe coincident method for experiments

The Detector Finished

Past Experience

- Many workshops demonstrating these devices
- This year workshop at MSU built two detectors
- Students and teachers enthusiastic

Summary

- Detectors work
- Two preliminary documents available
- Future documentation in progress
- A few available for short term borrowing
- Want to work with groups to improve documentation
- Need to put detector online
- Circuit boards are available for interested parties